EPEC-activated ERK1/2 participate in inflammatory response but not tight junction barrier disruption.
نویسندگان
چکیده
Enteropathogenic Escherichia coli (EPEC) alters many functions of the host intestinal epithelia. Inflammation is initiated by activation of nuclear factor (NF)-kappaB, and paracellular permeability is enhanced via a Ca2+- and myosin light-chain kinase (MLCK)-dependent pathway. The aims of this study were to identify signaling pathways by which EPEC triggers inflammation and to determine whether these pathways parallel or diverge from those that alter permeability. EPEC-induced phosphorylation and degradation of the primary inhibitor of NF-kappaB (IkappaBalpha) were tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta independent. In contrast to Salmonella typhimurium, EPEC-stimulated IkappaBalpha degradation and IL-8 expression did not require Ca2+. Instead, extracellular signal-regulated kinase (ERK)-1/2 was significantly and rapidly activated. ERK1/2 inhibitors attenuated IkappaBalpha degradation and IL-8 expression. Although ERK1/2 can activate MLCK, its inhibition had no impact on EPEC disruption of the tight junction barrier. In conclusion, EPEC-induced inflammation 1) is TNF-alpha and IL-1beta receptor independent, 2) utilizes pathways differently from S. typhimurium, 3) requires ERK1/2, and 4) employs signals that are distinct from those that alter permeability. This is the first time that EPEC-activated signaling cascades have been linked to independent functional consequences.
منابع مشابه
Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function.
Enteropathogenic Escherichia coli (EPEC) is an important human intestinal pathogen, especially in infants. EPEC adherence to intestinal epithelial cells induces the accumulation of a number of cytoskeletal proteins beneath the bacteria, including the membrane-cytoskeleton linker ezrin. Evidence suggests that ezrin can participate in signal transduction. The aim of this study was to determine wh...
متن کاملMicrobes and microbial toxins: paradigms for microbial-mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position.
Enteropathogenic Escherichia coli (EPEC) is primarily associated with infantile diarrhea in developing countries. This intriguing pathogen exerts numerous physiological effects on its host target tissue, the intestinal epithelium, all from an extracellular location. Expression of a type III secretory apparatus allows this organism to transfer bacterial effector molecules directly into host cell...
متن کاملEnteropathogenic E. coli-induced barrier function alteration is not a consequence of host cell apoptosis.
Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen that perturbs intestinal epithelial function. Many of the alterations in the host cells are mediated by effector molecules that are secreted directly into epithelial cells by the EPEC type III secretion system. The secreted effector molecule EspF plays a key role in redistributing tight junction proteins and altering epithelia...
متن کاملA gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeability encodes a chaperone for EspF.
Disruption of the barrier properties of the enterocyte tight junction is believed to be important in the pathogenesis of diarrhea caused by enteropathogenic Escherichia coli (EPEC). This phenotype can be measured in vitro as the ability of EPEC to reduce transepithelial resistance (TER) across enterocyte monolayers and requires the products of the locus of enterocyte effacement (LEE) and, in pa...
متن کاملBacterial induction of Snail1 contributes to blood-brain barrier disruption.
Bacterial meningitis is a serious infection of the CNS that results when blood-borne bacteria are able to cross the blood-brain barrier (BBB). Group B Streptococcus (GBS) is the leading cause of neonatal meningitis; however, the molecular mechanisms that regulate bacterial BBB disruption and penetration are not well understood. Here, we found that infection of human brain microvascular endothel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 281 4 شماره
صفحات -
تاریخ انتشار 2001